Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.332
1.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article En | MEDLINE | ID: mdl-38715976

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Macrophages , Rats, Inbred SHR , Receptors, Calcium-Sensing , Animals , Receptors, Calcium-Sensing/metabolism , Macrophages/metabolism , Rats , Male , Ventricular Remodeling/physiology , Myocardium/pathology , Myocardium/metabolism , Fibrosis/metabolism , Blood Pressure , Mice , Hypertension/metabolism , Hypertension/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
Biomed Khim ; 70(2): 89-98, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711408

Comparative proteomic analysis of kidney tissue from normotensive (WKY) and spontaneously hypertensive (SHR) rats revealed quantitative and qualitative changes in renal proteins. The number of renal proteins specific for WKY rats (blood pressure 110-120 mm Hg) was 13-16. There were 20-24 renal proteins specific for SHR (blood pressure 180 mm Hg and more). The total number of identified renal proteins common for both rat strains included 972-975 proteins. A pairwise comparison of all possible (SHR-WKY) variants identified 8 proteins specific only for normotensive (WKY) animals, and 7 proteins specific only for hypertensive ones (SHR). Taking into consideration their biological roles, the lack of some enzyme proteins in hypertensive rats (for example, biliverdin reductase A) reduces the production of molecules exhibiting antihypertensive properties, while the appearance of others (e.g. betaine-homocysteine S-methyltransferase 2, septin 2, etc.) can be interpreted as a compensatory reaction. Renal proteins with altered relative content (with more than 2.5-fold change) accounted for no more than 5% of all identified proteins. Among the proteins with an increased relative content in hypertensive animals, the largest group consisted of proteins involved in the processes of energy generation and carbohydrate metabolism, as well as antioxidant and protective proteins. In the context of the development of hypertension, the identified relative changes can apparently be considered compensatory. Among the proteins with the most pronounced decrease in the relative content in hypertensive rats, the dramatic reduction in acyl-CoA medium-chain synthetase-3 (ACSM3) appears to make an important contribution to the development of renal pathology in these animals.


Hypertension , Kidney , Proteomics , Rats, Inbred SHR , Animals , Rats , Hypertension/metabolism , Kidney/metabolism , Proteomics/methods , Male , Rats, Inbred WKY , Proteome/metabolism , Proteome/analysis , Blood Pressure
3.
FASEB J ; 38(9): e23654, 2024 May 15.
Article En | MEDLINE | ID: mdl-38717442

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Rats, Inbred SHR , Unfolded Protein Response , Animals , Metformin/pharmacology , Unfolded Protein Response/drug effects , Male , Rats , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Hypertension/metabolism , Hypertension/drug therapy , Ventricular Remodeling/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Rats, Inbred WKY
4.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690903

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Hypertension , Muscle, Smooth, Vascular , NADPH Oxidase 1 , Protein Disulfide-Isomerases , Rats, Inbred SHR , Up-Regulation , Animals , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Hypertension/physiopathology , Hypertension/genetics , Hypertension/metabolism , Rats , Muscle, Smooth, Vascular/metabolism , Male , Myocytes, Smooth Muscle/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Rats, Wistar , Transcription, Genetic
5.
J Appl Physiol (1985) ; 136(5): 1195-1208, 2024 May 01.
Article En | MEDLINE | ID: mdl-38572539

Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to ß-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and ß1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.


Blood Pressure , High-Intensity Interval Training , Hypertension , Ovariectomy , Physical Conditioning, Animal , Rats, Inbred SHR , Animals , Female , High-Intensity Interval Training/methods , Rats , Blood Pressure/physiology , Hypertension/physiopathology , Hypertension/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Vasodilation/physiology , Ventricular Remodeling/physiology
6.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612680

The central exacerbating factor in the pathophysiology of ischemic-reperfusion acute kidney injury (AKI) is oxidative stress. Lipid peroxidation and DNA damage in ischemia are accompanied by the formation of 3-nitrotyrosine, a biomarker for oxidative damage. DNA double-strand breaks (DSBs) may also be a result of postischemic AKI. γH2AX(S139) histone has been identified as a potentially useful biomarker of DNA DSBs. On the other hand, hypoxia-inducible factor (HIF) is the "master switch" for hypoxic adaptation in cells and tissues. The aim of this research was to evaluate the influence of hyperbaric oxygen (HBO) preconditioning on antioxidant capacity estimated by FRAP (ferric reducing antioxidant power) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as well as on oxidative stress parameter 3-nitrotyrosine, and to assess its effects on γH2AX(S139), HIF-1α, and nuclear factor-κB (NF-κB) expression, in an experimental model of postischemic AKI induced in spontaneously hypertensive rats. The animals were divided randomly into three experimental groups: sham-operated rats (SHAM, n = 6), rats with induced postischemic AKI (AKI, n = 6), and group exposed to HBO preconditioning before AKI induction (AKI + HBO, n = 6). A significant improvement in the estimated glomerular filtration rate, eGFR, in AKI + HBO group (p < 0.05 vs. AKI group) was accompanied with a significant increase in plasma antioxidant capacity estimated by FRAP (p < 0.05 vs. SHAM group) and a reduced immunohistochemical expression of 3-nitrotyrosine and γH2AX(S139). Also, HBO pretreatment significantly increased HIF-1α expression (p < 0.001 vs. AKI group), estimated by Western blot and immunohistochemical analysis in kidney tissue, and decreased immunohistochemical NF-κB renal expression (p < 0.01). Taking all of these results together, we may conclude that HBO preconditioning has beneficial effects on acute kidney injury induced in spontaneously hypertensive rats.


Acute Kidney Injury , Hyperbaric Oxygenation , Reperfusion Injury , Animals , Rats , Antioxidants , NF-kappa B , Rats, Inbred SHR , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Kidney , Ischemia , Reperfusion , Oxidative Stress , Oxygen , DNA Damage , Biomarkers , DNA
7.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38632579

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Hypertension , Microbiota , Humans , Rats , Animals , Rats, Inbred SHR , Neuroinflammatory Diseases , Hypertension/metabolism , Blood Pressure , Medulla Oblongata/metabolism , Acetates/pharmacology
8.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627621

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Hypertension , Insulins , Metabolic Syndrome , Animals , Humans , Male , Rats , Adiponectin , Aorta , Biomarkers/metabolism , C-Reactive Protein/metabolism , Chemokine CCL2 , Inflammation , Insulins/metabolism , Metabolic Syndrome/diagnosis , Metabolic Syndrome/genetics , Oxidative Stress , Rats, Inbred SHR
9.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38581395

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Angiotensin-Converting Enzyme 2 , Hypertension , Rats , Animals , Rats, Inbred SHR , Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , Kynurenine/metabolism , Kynurenine/pharmacology , Tryptophan/metabolism , Peptides/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism
10.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38604968

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Hypertension , Interleukin-8 , Female , Rats , Male , Mice , Animals , Rats, Inbred SHR , Blood Pressure , Rats, Inbred WKY , Interleukin-8/metabolism , Interleukin-8/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/pharmacology , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Reactive Oxygen Species , Oxidative Stress , Inflammation
11.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673809

Cnidium monnieri (L.) Cusson, a member of the Apiaceae family, is rich in coumarins, such as imperatorin and osthole. Cnidium monnieri fruit (CM) has a broad range of therapeutic potential that can be used in anti-bacterial, anti-cancer, and sexual dysfunction treatments. However, its efficacy in lowering blood pressure through vasodilation remains unknown. This study aimed to assess the potential therapeutic effect of CM 50% ethanol extract (CME) on hypertension and the mechanism of its vasorelaxant effect. CME (1-30 µg/mL) showed a concentration-dependent vasorelaxation on constricted aortic rings in Sprague Dawley rats induced by phenylephrine via an endothelium-independent mechanism. The vasorelaxant effect of CME was inhibited by blockers of voltage-dependent and Ca2+-activated K+ channels. Additionally, CME inhibited the vascular contraction induced by angiotensin II and CaCl2. The main active compounds of CM, i.e., imperatorin (3-300 µM) and osthole (1-100 µM), showed a concentration-dependent vasorelaxation effect, with half-maximal effective concentration values of 9.14 ± 0.06 and 5.98 ± 0.06 µM, respectively. Orally administered CME significantly reduced the blood pressure of spontaneously hypertensive rats. Our research shows that CME is a promising treatment option for hypertension. However, further studies are required to fully elucidate its therapeutic potential.


Antihypertensive Agents , Blood Pressure , Cnidium , Ethanol , Fruit , Furocoumarins , Hypertension , Plant Extracts , Rats, Inbred SHR , Rats, Sprague-Dawley , Vasodilator Agents , Animals , Cnidium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Blood Pressure/drug effects , Rats , Fruit/chemistry , Vasodilator Agents/pharmacology , Male , Antihypertensive Agents/pharmacology , Ethanol/chemistry , Furocoumarins/pharmacology , Hypertension/drug therapy , Hypertension/physiopathology , Vasodilation/drug effects , Coumarins/pharmacology , Coumarins/chemistry
12.
Arq Bras Cardiol ; 121(2): e20230405, 2024.
Article Pt, En | MEDLINE | ID: mdl-38597541

BACKGROUND: Systemic arterial hypertension is a risk factor for cardiac, renal, and metabolic dysfunction. The search for new strategies to prevent and treat cardiovascular diseases led to the synthesis of new N-acylhydrazones to produce antihypertensive effect. Adenosine receptors are an alternative target to reduce blood pressure because of their vasodilatory action and antioxidant properties, which may reduce oxidative stress characteristic of systemic arterial hypertension. OBJECTIVE: To evaluate the antihypertensive profile of novel selenium-containing compounds designed to improve their interaction with adenosine receptors. METHODS: Vascular reactivity was evaluated by recording the isometric tension of pre-contracted thoracic aorta of male Wistar rats after exposure to increasing concentrations of each derivative (0.1 to 100 µM). To investigate the antihypertensive effect in spontaneously hypertensive rats, systolic, diastolic, and mean arterial pressure and heart rate were determined after intravenous administration of 10 and 30 µmol/kg of the selected compound LASSBio-2062. RESULTS: Compounds named LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092, and LASSBio-2093 promoted vasodilation with mean effective concentrations of 15.5 ± 6.5; 14.6 ± 2.9; 18.7 ± 9.6; 6.7 ± 4.1; > 100; 6.0 ± 3.6; 37.8 ± 11.8; and 15.9 ± 5.7 µM, respectively. LASSBio-2062 (30 µmol/kg) reduced mean arterial pressure in spontaneously hypertensive rats from 124.6 ± 8.6 to 72.0 ± 12.3 mmHg (p < 0.05). Activation of adenosine receptor subtype A3 and potassium channels seem to be involved in the antihypertensive effect of LASSBio-2062. CONCLUSIONS: The new agonist of adenosine receptor and activator of potassium channels is a potential therapeutic agent to treat systemic arterial hypertension.


FUNDAMENTO: A hipertensão arterial sistêmica é um fator de risco para disfunções cardíacas, renais e metabólicas. A busca por novas estratégias para prevenir e tratar doenças cardiovasculares levou à síntese de novas N-acilidrazonas para produzir efeito anti-hipertensivo. Os receptores de adenosina são um alvo alternativo para reduzir a pressão arterial devido à sua ação vasodilatadora e propriedades antioxidantes, que podem reduzir o estresse oxidativo característico da hipertensão arterial sistêmica. OBJETIVO: Avaliar o perfil anti-hipertensivo de novos compostos contendo selênio desenvolvidos para melhorar sua interação com os receptores de adenosina. MÉTODOS: Foi avaliada a reatividade vascular, registrando-se a tensão isométrica da aorta torácica pré-contraída de ratos Wistar machos após exposição a concentrações crescentes de cada derivado (0,1 a 100 µM). Para investigar o efeito anti-hipertensivo em ratos espontaneamente hipertensos, foram determinadas a pressão arterial sistólica, pressão arterial diastólica, pressão arterial média e a frequência cardíaca após administração intravenosa de 10 e 30 µmol/kg do composto selecionado LASSBio-2062. RESULTADOS: Os compostos denominados LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092 e LASSBio-2093 promoveram vasodilatação com concentrações efetivas médias de 15,5 ± 6,5; 14,6 ± 2,9; 18,7 ± 9,6; 6,7 ± 4,1; > 100; 6,0 ± 3,6; 37,8 ± 11,8; e 15,9 ± 5,7 µM, respectivamente. O LASSBio-2062 (30 µmol/kg) reduziu a pressão arterial média em ratos espontaneamente hipertensos de 124,6 ± 8,6 para 72,0 ± 12,3 mmHg (p < 0,05). A ativação do receptor de adenosina subtipo A3 e dos canais de potássio parece estar envolvida no efeito anti-hipertensivo do LASSBio-2062. CONCLUSÕES: O novo agonista do receptor de adenosina e ativador dos canais de potássio é um potencial agente terapêutico para o tratamento da hipertensão arterial sistêmica.


Antihypertensive Agents , Hypertension , Rats , Animals , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats, Inbred SHR , Rats, Wistar , Hypertension/drug therapy , Blood Pressure , Potassium Channels
13.
J Physiol Pharmacol ; 75(1)2024 02.
Article En | MEDLINE | ID: mdl-38583435

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Receptors, Dopamine D3 , Desoxycorticosterone Acetate/pharmacology , Endothelin Receptor Antagonists/pharmacology , Rats, Inbred SHR , Hypertension/chemically induced , Endothelins/pharmacology , Water , Acetates/pharmacology , Blood Pressure , Endothelin-1
14.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38636578

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Antihypertensive Agents , Hypertension , Medicine, Chinese Traditional , Metabolomics , Network Pharmacology , Rats, Inbred SHR , Animals , Hypertension/drug therapy , Hypertension/physiopathology , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats , Medicine, Chinese Traditional/methods , Blood Pressure/drug effects , Antelopes , Liver/drug effects , Liver/metabolism , Liver/pathology , Horns , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Disease Models, Animal
15.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article En | MEDLINE | ID: mdl-38666497

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Hypertension , Paraventricular Hypothalamic Nucleus , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats , Hypertension/drug therapy , Hypertension/metabolism , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Blood Pressure/drug effects , Antihypertensive Agents/pharmacology , Neurons/drug effects , Neurons/metabolism
16.
Biomed Pharmacother ; 174: 116520, 2024 May.
Article En | MEDLINE | ID: mdl-38581924

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Benzhydryl Compounds , Diet, High-Fat , Glucosides , Liver , Rats, Inbred SHR , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Male , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cardiotonic Agents/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Protective Agents/pharmacology , Hypertension/drug therapy
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167113, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460862

Hypertension, a prevalent cardiovascular ailment globally, can precipitate numerous complications, notably hypertensive cardiomyopathy. Meteorin-like (METRNL) is demonstrated to possess potential protective properties on cardiovascular diseases. However, its specific role and underlying mechanism in hypertensive myocardial hypertrophy remain elusive. Spontaneously hypertensive rats (SHRs) served as hypertensive models to explore the effects of METRNL on hypertension and its induced myocardial hypertrophy. The research results indicate that, in contrast to Wistar-Kyoto (WKY) rats, SHRs exhibit significant symptoms of hypertension and myocardial hypertrophy, but cardiac-specific overexpression (OE) of METRNL can partially ameliorate these symptoms. In H9c2 cardiomyocytes, METRNL suppresses Ang II-induced autophagy by controlling the BRCA2/Akt/mTOR signaling pathway. But when BRCA2 expression is knocked down, this effect will be suppressed. Collectively, METRNL emerges as a potential therapeutic target for hypertensive cardiomyopathy.


Cardiomyopathies , Hypertension , Rats , Animals , Rats, Inbred WKY , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Hypertension/complications , Hypertension/genetics , Hypertension/drug therapy , Rats, Inbred SHR , Myocytes, Cardiac/metabolism , Cardiomyopathies/metabolism , Autophagy/genetics
18.
Pharmacol Res Perspect ; 12(2): e1189, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504425

Antihypertensive drug therapies have demonstrated their capacity to modulate the inflammatory processes associated with hypertension, leading to improvements in disease progression. Given the prevalent use of polytherapy in treating most hypertensive patients, comprehending the time-dependent effects of combination treatments on inflammation becomes imperative. In this study, spontaneously hypertensive rats (SHR) were divided into seven groups (n = 6): (i) SHR + vehicle, (ii) SHR + nebivolol, (iii) SHR + valsartan, (iv) SHR + lisinopril, (v) SHR + nebivolol-valsartan, (vi) SHR + nebivolol-lisinopril, and (vii) WKY + vehicle. Blood pressure was measured using the tail-cuff method. Temporal alterations in inflammatory cytokines TNF-α, IL-6, and IL-10 were assessed in serum through ELISA and mRNA expression in aortic tissue via qPCR after 1, 2, and 4 weeks of treatment with nebivolol, lisinopril, valsartan, and their respective combinations. Histological alterations in the aorta were assessed. The findings indicated that combined treatments reduced systolic and diastolic blood pressure in SHR. The nebivolol and lisinopril combination demonstrated a significant decrease in IL-6 serum and mRNA expression at both 1 week and 4 weeks into the treatment. Additionally, TNF-α mRNA expression also showed a reduction with this combination at the same time points. Particularly, nebivolol-valsartan significantly decreased TNF-α serum and mRNA expression after one and four weeks of treatment. Furthermore, an elevation in serum IL-10 levels was observed with both combination treatments starting from the second week onwards. This study provides compelling evidence that concurrent administration of nebivolol with lisinopril or valsartan exerts time-dependent effects, reducing proinflammatory cytokines TNF-α and IL-6 while modifying IL-10 levels in an experimental hypertensive model.


Hypertension , Lisinopril , Humans , Rats , Animals , Nebivolol/pharmacology , Nebivolol/therapeutic use , Rats, Inbred SHR , Lisinopril/pharmacology , Lisinopril/therapeutic use , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/genetics , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Interleukin-10/genetics , Rats, Inbred WKY , Hypertension/drug therapy , Cytokines , Valsartan/therapeutic use , RNA, Messenger
19.
Article En | MEDLINE | ID: mdl-38447242

High blood pressure is a serious human health problem and one of the leading risk factors for fatal complications in cardiovascular disease. The ZXT granules were prepared based on the Zhengan-Xifeng-Tang (ZXT) decoction. However, the therapeutic effects of ZXT granules on spontaneous hypertension and the metabolic pathways in which they may intervene are unclear. The aim of this study was to investigate the antihypertensive effect of ZXT granules on spontaneously hypertensive rats (SHR) and to analyze the metabolic pathway of intervention through chemical composition characterization, pharmacodynamics, and serum metabolomics analysis. After eight weeks of administration, serum and aortic arch samples were collected for biochemical, histopathology and serum metabolomics analysis to assess the effect of ZXT granules on SHR. The results showed that ZXT granules reduced aortic arch injury and blood pressure in SHR rats. Serum data from rats in each group was collected using LC-MS and 74 potential biomarkers were identified that showed significant differences between the model and control groups. Of these, 18 potential biomarkers were found to be deregulated after intervention with ZXT granules. These 18 potential differential metabolic markers are primarily involved in bile acid biosynthesis, arachidonic acid metabolism pathway, and fatty acid degradation. The results demonstrated that ZXT granules significantly affected blood lipids, aortic arch, and metabolic disorders in SHR rats. ZXT granules offer a new possibility for effective and convenient treatment of hypertensive patients.


Drugs, Chinese Herbal , Hypertension , Humans , Rats , Animals , Antihypertensive Agents/pharmacology , Rats, Inbred SHR , Hypertension/drug therapy , Metabolomics/methods , Biomarkers , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
20.
Biomolecules ; 14(3)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38540753

BACKGROUND: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1ß, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. METHODS: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1ß, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. RESULTS: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1ß, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1ß, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. CONCLUSION: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.


Cannabinoids , Hypertension , Rats , Mice , Animals , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , Microglia/metabolism , Interleukin-6/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Cannabinoids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Rats, Inbred SHR , Hypertension/drug therapy , Hypertension/metabolism , Glycolysis , Lactic Acid/metabolism , Norepinephrine/metabolism
...